A TERCEIRA REPRESENTAÇÃO DE ESTADO QUÂNTICO COM O SDCTIE GRACELI.

3- UM ESTADO QUÂNTICO SE FUNDAMENTA CONORME SE ENCONTRA NOS PARÃMETROS DO SDCTIE GRACELI.

COMO EXPRESSO ABAIXO, NA FUNÇÃO GERAL DO SDCITE GRACELI.

A representação do estado


No formalismo da mecânica quântica, o estado de um sistema num dado instante de tempo pode ser representado de duas formas principais:

  1. O estado é representado por uma função complexa da posição ou do momento linear de cada partícula que compõe o sistema. Essa representação é chamada função de onda.
  2. Também é possível representar o estado por um vetor num espaço vetorial complexo.[3] Esta representação do estado quântico é chamada vetor de estado. Devido à notação introduzida por Paul Dirac, tais vetores são usualmente chamados kets (sing.: ket).

Em suma, tanto as "funções de onda" quanto os "vetores de estado" (ou kets) representam os estados de um dado sistema físico de forma completa e equivalente e as leis da mecânica quântica descrevem como vetores de estado e funções de onda evoluem no tempo.

Estes objetos matemáticos abstratos (kets e funções de onda) permitem o cálculo da probabilidade de se obter resultados específicos em um experimento concreto. Por exemplo, o formalismo da mecânica quântica permite que se calcule a probabilidade de encontrar um elétron em uma região particular em torno do núcleo.

Para compreender seriamente o cálculo das probabilidades a partir da informação representada nos vetores de estado e funções de onda é preciso dominar alguns fundamentos de álgebra linear.



TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll * D
          
X
 [ESTADO QUÂNTICO]


Fidelidade, ou função de fidelidade, ou ainda função quântica de fidelidade, em Teoria de informação quântica, é u’a medida do "fechamento" (em inglêscloseness) de/entre dois estados quânticos. Não é medida no espaço de matrizes densidade. Costuma, quando não há possibilidade de confusão, ou se o assunto é tratado especifica e restritamente no domínio físico-químico quântico, ser reportada apenas por fidelidade, a bem da simplicidade.


Introdução

Em teoria de probabilidade, dadas duas variáveis aleatórias p = (p1...pn) e q = (q1...qn) no espaço de probabilidades X = {1,2...n}. A fidelidade de p e q é definida pela quantidade

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

Noutras palavras, a fidelidade F(p,q) é o produto escalar ou interno de  e 

X vistos como vetores no Espaço euclidiano. Observe que, quando p = qF(p,q) = 1. Em geral, 

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Fazendo-se as modificações apropriadas para a noção matricial de raiz quadrada, pode-se dizer que a definição acima fornece a função fidelidade de dois estados quânticos.

Definição

Dadas duas matrizes densidade ρ e σ, a função fidelidade é definida por:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Por M½ de u’a matriz positiva semidefinida M, quer-se significar a unicidade da raiz quadrada dada pelo teorema espectral. O produto escalar ou interno euclidiano a partir da definição clássica é substituído pelo produto escalar de Hilbert-Schmidt. Quando se trata de estados clássicos, isto é, quando ρ e σ são comutativos, a definição dada coincide com aquela válida para função de densidade de probabilidade.

Observe-se, pela definição, que F é não-negativo, e F(ρ,ρ) = 1. Na seção seguinte será mostrado que ele não pode ser maior que 1.

Exemplos simples

Estados puros

Considerem-se estados puros dados por:

 and  Sua fidelidade será:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Isso é, algumas vezes, chamado superposição entre dois estados. Se — diga-se —  é um eigen-estado de um observável, e o sistema é preparado em  então F(ρ, σ)2 é a probabilidade do sistema estar no estado  após a medida.

Estados comutativos

Sejam ρ e σ duas matrizes densidade comutativas. Assim, elas podem ser simultaneamente diagonalizadas por matrizes unitárias, de modo que se pode escrever:

 e 
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


para alguma base ortonormal 

O cálculo direto mostra que a fidelidade é:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Isso mostra que, heuristicamente, fidelidade de estados quânticos é uma extensão genuína da noção advinda da teoria de probabilidades.

Algumas propriedades

Invariância unitária

O cálculo direto mostra que a fidelidade é preservada por evolução unitária, isto é:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


para qualquer operador unitário U.

Teorema de Uhlmann

Viu-se que, para dois estados puros, sua fidelidade coincide com a superposição. O teorema de Uhlmann estende ou generalize essa afirmação para estados mistos, em termos de suas purificações:

Teorema Sejam ρ e σ duas matrizes densidade agindo sobre Cn. Seja ρ½ a raiz quadrada positiva única de ρ e

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

uma purificação quântica de ρ (logo {|ei >} é uma base ortonormal).

Então, a seguinte igualdade é válida:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde  é uma purificação de σ. Assim, em geral, a fidelidade é a máxima superposição entre as purificações.

Prova: Uma prova simples pode ser apresentada como segue. Seja |Ω > o vetor

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

e σ½ raiz quadrada positiva única de σ. Viu-se que, devido à liberdade unitária em fatorações de raiz quadrada e escolhidas bases ortonormais, uma purificação arbitrária de σ é da forma

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

onde Vi's operadores unitários. Agora se calcula diretamente

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Mas, em geral, para qualquer matriz quadrada A e unitária U, é verdadeiro que |Tr(AU)| ≤ Tr (A*A)½. Ademais, igualdade é assegurada se U* é o operador unitário na decomposição polar de A. Resta, pois, demonstrado diretamente o teorema de Uhlmann.

Comentários

Postagens mais visitadas deste blog